Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa.

Authors: 
Sharma TP, Wiley LA, Whitmore SS, Anfinson KR, Cranston CM, Oppedal DJ, Daggett HT, Mullins RF, Tucker BA, Stone EM.

Retinitis pigmentosa (RP) is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1) gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.

Journal: 
Stem Cell Res.
Publication Date: 
Sat, 03/18/2017
Pubmed ID: 
28390992