Enhanced differentiation and delivery of mouse retinal progenitor cells using a micropatterned biodegradable thin-film polycaprolactone scaffold

Authors: 
Yao J, Ko CW, Baranov PY, Regatieri CV, Redenti S, Tucker BA, Mighty J, Tao SL, Young MJ.

The deterioration of retinal tissue in advanced stages of retinitis pigmentosa and age-related macular degeneration and the lack of signaling cues for laminar regeneration are significant challenges highlighting the need for a tissue-engineering approach to retinal repair. In this study, we fabricated a biodegradable thin-film polycaprolactone (PCL) scaffold with varying surface topographies using microfabrication techniques. Mouse retinal progenitor cells (mRPC) cultured on PCL scaffolds exhibited enhanced potential to differentiate towards a photoreceptor fate in comparison to mRPCs cultured on control substrates, suggesting that PCL scaffolds are promising as substrates to guide differentiation of mRPCs towards a photoreceptor fate in vitro prior to transplantation. When co-cultured with the retinal explants of rhodopsin null mice, mRPC/PCL constructs showed increased mRPC integration rates compared to directly applied dissociated mRPCs. Moreover, these mRPC/PCL constructs could be delivered into the sub-retinal space of rhodopsin null mice with minimal disturbance of the host retina. Whether co-cultured with retinal explants or transplanted into the sub-retinal space, newly integrated mRPCs localized to the outer nuclear layer and expressed appropriate markers of photoreceptor fate. Thus, the PCL scaffold provides a platform to guide differentiation and organized deliver of mRPCs as a practical strategy to repair damaged retina.
http://www.ncbi.nlm.nih.gov/pubmed/25517296

Journal: 
Tissue Eng Part A.
Publication Date: 
Wed, 12/17/2014
Pubmed ID: 
25517296